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1. Background

This paper deals with the military application of hyper­
spectral imagery (HSI). A succinct, well-written summary 
of the military utility of HSI is found at GlobalSecurity.
org.1 An excerpt follows:

Hyperspectral imaging technology uses hundreds of very 
narrow wavelength bands to ‘see’ reflected energy from 
objects on the ground. This energy appears in the form of 
‘spectral fingerprints’ across the light spectrum and enables 
collection of much more detailed data and produce a much 
higher spectral resolution of a scene than possible using other 
remote sensing technologies.

Once these fingerprints are detected, special algorithms—
repetitive, problem-solving mathematical calculations—then 
assess them to differentiate various natural and manmade 
substances from one another. ‘Signature’ libraries may also be 
used to identify specific materials—e.g., rooftops, parking 
lots, grass, or mud—by comparing a library’s pre-existing 
reference catalogs with freshly taken hyperspectral images of 
the battlefield from space.

Image processing equipment then portrays the various types of 
terrain and objects upon it in different colors forming a ‘color 

cube,’ each based on the wavelength of the reflected energy 
captured by the image. These colors are subsequently 
‘translated’ into maps that correspond to certain types of 
material or objects to detect or identify military targets such 
as a tank or a mobile missile launcher. Algorithms can also 
categorize types of terrain and vegetation (useful, for example, 
in counter-narcotic operations), detecting features such as 
disturbed soil, stressed vegetation, and whether the ground 
will support the movement of military vehicles.

Once this technology is mature, theater commanders can use 
mobile ground stations to process in real-time information 
transmitted by the satellite, critical to theater commanders for 
them to keep pace with rapidly changing conditions.
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More detailed discussions are found in Ardouin et al.2 
and Briottet et al.3 The background material given above 
reflects a general application area known as signature 
matching.4 The application of such algorithms is compli­
cated by the need to convert the collected sensor data into 
the spectra of the material of interest. The sensor collects 
what is known as spectral radiance. Radiance is modulated 
by atmospheric effects, such as the absorption of the energy 
of certain spectral bands and the superposition of solar 
energy scattered by the atmosphere on to the light reflected 
by an object. The spectra of the material of interest are mea­
sured in terms of what is called emissivity or reflectance. It 
can be thought of as the spectral signature of the material as 
collected under laboratory conditions where the effects of 
the atmosphere have been factored out. The application 
of signature-matching algorithms requires the conversion 
of the radiance into reflectance. This process is known as 
atmospheric calibration. Now, if the complications due to 
weather are compounded with the interest in several differ­
ent objects, each of which may be associated with multiple 
signatures, there may be a desire to apply what are known 
as anomaly detectors. These seek to find observations that 
are different from typical background materials without 
using specific target signatures.4 

In this paper, we propose a new anomaly detector. The 
method can be described as a global version of the localized 
RX algorithm.5,6 The new method incorporates robust esti­
mates of the filter’s parameters. Where the RX algorithm 
involves the movement of a window through the pixels of 
an image while computing localized statistics, the proposed 
method computes its scores relative to a robust parameter 
set computed for clusters of pixels within the image. 
Related work can be found in Taitano et al.7 In Section 2, a 
little more background is given for readers unfamiliar with 
hyperspectral imaging.

2. Introduction

Digital photographs taken from aircraft or satellites can be 
used for a wide range of military and civilian applications, 
such as locating a tank in a field or establishing the presence 
of a certain type of foliage. Several methods exist to locate 
anomalies in an image; for instance, highly trained individu­
als view the photograph with the human eye, or data from 
the image is analyzed using either local or global anomaly 
detectors. The first method can prove to be very difficult, 
especially in a highly cluttered area. It can also be extremely 
time consuming, because the area of interest has to be pho­
tographed and sent to an imagery expert, who then manually 
analyzes the image to determine if there are anomalies. The 
second, and possibly more effective method, is to analyze 
the data from the image using an image-processing algo­
rithm known as an anomaly detector.

A hyperspectral image is similar to a photograph taken 
from an ordinary digital camera; however, a hyperspectral 

image may contain data from more than 250 wavelength 
bands from the electromagnetic (EM) spectrum, which 
includes some non-visible bands, whereas a standard digital 
camera collects data from only three bands in the visible 
spectrum, that the human eye sees as red, green, and blue. 
These images are made by specialized cameras placed on, 
say, an aircraft within the Earth’s atmosphere or on a satel­
lite in space. The image is divided up into pixels and the 
magnitude of the signal for each band is recorded for each 
pixel. The number of pixels in an image depends on the 
resolution of the camera. An image that captures fewer than 
20 bands of the spectrum referred to as a multispectral 
image, and an image with 20 or more bands is called a 
hyperspectral image. All of this data is then stored in a 
three-dimensional hypermatrix,8 referred to as a data cube, 
with the first two dimensions of the hypermatrix, x and y, 
being the location of the pixel in the image, and the third 
dimension, z, being the magnitude at each of the recorded 
EM bands. The image can be thought of as a series of vec­
tors, one for each pixel location, that contains the wave­
length magnitudes for each of the bands.

Consequently, HSI data can be analyzed using standard 
multivariate statistical techniques, and anomalies may be 
found by locating outliers within the data. Certain tech­
niques specific to locating anomalies in an image, such as 
global anomaly detectors, work most efficiently when 
applied to homogenous datasets. Therefore, if data are 
being analyzed for the presence of anomalies in an image 
containing more than one main feature, such as a field with 
a road running through it, cluster analysis must be accom­
plished prior to using a global anomaly detector, or the 
detector may determine the road is the anomaly in the 
image, and true anomalies may be overlooked. When per­
formed properly, cluster analysis splits the data into the 
requested number of subsets, known as clusters, allowing 
global anomaly detectors to analyze each cluster individu­
ally to produce the best results. In this paper, we will pro­
pose the use of the closest distance to center (CDC) 
algorithm9 in conjunction with the ellipsoidal multivariate 
trimming (MVT) algorithm10 as a method for finding 
anomalies in hyperspectral images. We call this new method 
‘screened MVT’. The purpose of this paper is to demon­
strate that some standard tools used in process control can 
be readily adapted to a new problem area.

The paper is organized as follows. Firstly, we present a 
brief overview of the area of HSI. Next, we discuss the need 
for dimensionality reduction and begin the development of 
a CDC/MVT anomaly detector, screened MVT. The pro­
posed method is tested on a set of hyperspectral images, 
and the paper is closed with a summary.

3. Hyperspectral imagery

To gain a basic understanding of HSI, we can begin with a 
discussion of the common digital camera that has become 
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ubiquitous in modern society. Conceptually, when we use a 
digital camera to take a color photograph, the camera 
divides the imaged scene into a two-dimensional grid of 
pixels. For each pixel, three pieces of information are col­
lected. These are, respectively, the amount of energy ema­
nating from the pixel in the red, green, and blue portions of 
the EM spectrum. This information is stored in three sepa­
rate two-dimensional arrays. For any given pixel, combin­
ing its respective red, green, and blue information produces 
the true color of the pixel. Of course, viewing the array of 
colored pixels on a computer screen or in its printed form 
reveals the scene originally photographed.

If we image a scene for the purpose of identifying differ­
ent objects that it may contain, a simple color image pro­
duced by a digital camera may suffice; however, a true-color 
image has its limitations. For example, vegetation and cam­
ouflage nets may both appear green, making it very difficult 
for the human eye – or worse, for the computer – to dis­
criminate one from the other. As seen in Figure 1, it is 
important to note that the visible spectrum of light is only a 
small fraction of the total EM spectrum that may be detected. 

To address this limitation of true-color imagery, hyper­
spectral sensors collect information beyond the visible 
region of the EM spectrum. Just as a digital camera pro­
duces three images for wavelength bands corresponding to 
red, green, and blue light, a hyperspectral sensor produces 
images for many different contiguous wavelength bands, 
typically spanning the visible to near-infrared regions of the 
EM spectrum. The number of image bands collected by a 
sensor can range from 20 to over 500. 

Consider the M × N pixelated scene of Figure 2. The 
hyperspectral sensor can be thought of as producing P dif­
ferent images, one for each band it collects. This collection 
of pixel-by-band information is often called an ‘image 
cube’. For m = 1, ... , M and n = 1, ... , N the pixel in row m, 
column n of band 1 refers to the same spatial location of the 
scene as the pixels in row m, column n of every other band 
in the image cube. The sensor reading for a pixel in row m, 
column n, and band λ = 1, ... , P, can be referred to by the 
variable xmnλ. For a given pixel address (m,n), we can form 
the vector
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This vector is often referred to as a pixel vector. If we take 
the transpose of all the pixel vectors in the image and place 
them in an (M × N) × P array, we form the data matrix, X, 
which is commonly used in multivariate statistical analysis. 

Using X, we are free to analyze the image data using 
multivariate analysis methods such as principal component 
analysis (PCA), cluster analysis, maximum likelihood clas­
sification, discriminant analysis, and others.

In this paper, all real test images are taken from
the COMPact Airborne Spectral Sensor (COMPASS) 
and Hyperspectral Digital Imagery Collection Equipment 
(HYDICE) sensors. The COMPASS sensor is able to receive 
data on an area at 255 different wavelengths of light across 

Figure 1.  Example of the bands of the electromagnetic spectrum used in hyperspectral imagery.11
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the EM spectrum. Synthetic images were also employed in 
this research. They are described in a subsequent section.

4. Decreasing the dimensionality of 
the dataset

Since HSI is characterized by large volumes of data (over 
28,800 pixels taken at over 200 wavelengths in the smallest 
example used in this paper), it is of practical necessity to 
decrease the dimensionality of the dataset. This is accom­
plished by PCA.11,12 Other compression methods, such as 
the use of wavelets, have been proposed.13,14 Here, PCA is 
employed since it is relatively simple to apply and, argu­
ably, it is the standard compression method used in prac­
tice. It is well known that PCA can decrease the dimension 
of the data significantly while still maintaining the ability to 
explain variability in the dataset.15 PC scores are found by 
projecting the data onto eigenvectors of their correlation/
covariance matrix. For the purposes of this paper, we deter­
mined the number of PC components to retain by using 
Kaiser’s criteria15 on all images so that each set that was 
originally of dimension (M × N) × P was decreased to 
dimension (M × N) × r, where r << P. The use of PCA for 
finding outliers in multivariate data is surveyed by 
Gnanadesikan and Kettenring16 and Rao.17

As alluded to earlier, rather than attempting to find 
anomalies across entire images, the images were first clus­
tered into homogeneous spectral groups using an algorithm 
called X-means.18 X-means is a clustering technique that 

uses an iterative scheme to find the proper number of clus­
ters and in turn perform the cluster binning based upon 
Bayesian information criterion (BIC) scores.19

5. Outlier detection overview

Certain outlier detection methods, such as MVT are known 
to be unreliable due to their use of the Mahalanobis distance 
in determining an initial mean vector and covariance matrix 
estimate.9,10 The CDC algorithm has been employed to alle­
viate this problem by determining a more robust initial start­
ing point for mean vector and covariance estimation;9 the 
starting point being more compatible to the set of good data 
(without the outliers present) and with the object being to use 
these estimates to begin MVT. Applying MVT with the CDC 
algorithm as an initial starting point should perform signifi­
cantly better than simply using MVT when there are multi­
ple outliers in the data.9 CDC/MVT seeks to trim out the bad 
data points to obtain more robust estimates of the covariance 
matrix and the mean vector. Such a procedure provides a 
more accurate Mahalanobis distance measurement that can 
be used to advantage to spot outlying observations.

6. The CDC/MVT algorithm

Herein the data have been pre-processed using PCA and a 
transformed dataset of significantly lower dimensionality is 
generated. The initial starting point for MVT is found by 
performing the CDC algorithm on the transformed dataset 

Figure 2.  The basic hyperspectral imaging process and data representation.
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to find ‘good’ estimates for the mean and the covariance. 
These estimates are rendered by finding the n/2 observa­
tions that are closest to the median vector using either 
Euclidean distance (2-norm) or the largest component 
absolute value difference from the centroid (max norm) and 
determining the mean and covariance from this subset.9 
Once these estimates are found we then begin MVT.

MVT is an iterative process that based upon a percentile 
(50% for Chiang’s algorithm9) of the smallest observations 
of Mahalonobis distance within a sample. These observa­
tions are used to determine a new mean vector and covari­
ance matrix. This process is repeated using the most-recent 
mean vector and covariance matrix until the mean vector 
and covariance matrix have stabilized. Once the iterations 
are complete, the resulting Mahalanobis distance for each 
data point is then used for outlier determination.9 The litera­
ture varies slightly in one regard during this process. While 
Chiang et al.9 state that the mean vector and covariance 
matrix must stabilize, Delvin et al.20 recommend using the 
stabilization of only the correlation matrix as the stopping 
criterion. In addition, Delvin et al.20 recommend using a 
difference of 10–3 as the stabilization criteria within the cor­
relation matrix or a maximum of 25 total iterations. Now, 
the 50th percentile for retention used in MVT is due to the 
low breakdown point of 50% outliers for the algorithm. 
Devlin et al.20 propose a different value for retention in 
MVT in which the percentile is equal to 100 × (1-1/
( p+1))%, where p is equal to the dimensionality of the data­
set. In this paper, we also propose using a higher percentile 
for retention in MVT based upon the assumption that there 
are significantly fewer outliers than background pixels in 
any given hyperspectral image cluster. We call this pro­
cedure screened MVT. The percentage to retain is based 
upon first taking the Mahalanobis distances found after the 
CDC algorithm and computing a conservative percentile 
from a fitted gamma distribution (maximum likelihood 
parameter estimates)21 with αretain = 10–1. Next, the percent-
age to retain in MVT is determined by the number of obser­
vations that fell beyond this percentile.

The CDC/MVT algorithm is very similar to the blocked 
adaptive computationally efficient outlier nominators 
(BACON) algorithm described by Billor et al.22 and adapted 
for hyperspectral image processing by Smetek and Bauer23 in 
that its overall goal is to trim the dataset so that the true cova­
riance structure of the data can be determined. Observations 
that are outliers will subsequently have much larger distance 
estimates and should be found easily in outlier determination 
after iterative estimates have stabilized. The CDC algorithm 
and our ‘screened MVT’ algorithm are detailed below.

6.1 The CDC algorithm

Input: An n × r matrix X of PC scores from hyperspectral 
data.

Output: An initial estimate of the mean, µ0, and cov­
ariance, S0, of the cluster set based upon the closest 
n/2 observations to the median.
Step 1: The median vector of the data is obtained.
Step 2: Determine the n/2 observations that are clos­
est to this median vector using either Euclidean dis­
tance or the max norm distance, where n is equal to 
the size of the dataset.
Step 3: From the n/2 observations find estimates for 
the mean vector, µc, and covariance matrix, Sc The 
mean vector and covariance matrix are then used as a 
starting point for MVT. 

6.2 The screened MVT algorithm

Input: An n × r matrix X of PC scores from hyperspec­
tral data and initial estimates of µ and Σ from CDC.
Output: Mahalanobis distance calculations for the 
corresponding n data points in the cluster set.
Step 1: Determine the µ and Σ for the dataset via CDC 
(as shown above). These are µc and Sc, respectively.
Step 2: Compute Mahalanobis distances for each 
observation, xi, i = 1, ... , n, using µc and Sc:

T( , ) ( ) ( )d x xi i c c i c

1− −n n nΣ Σ= -

Step 3: Determine the percentage to retain in MVT by:
[A] fitting a Gamma distribution to the di

(µ, S) Let
F(z) = Pr{di (µ, S) ≤ z} for all real z
denote the Gamma c.d f. that is fitted to the{di 
(µ, S): 1 = 1, ... , n} of Mahalanobis distances;
[B] find the quantile, d retain

1-a , associated with a 
conservative
αretain = 10-1, that is,

(1 )d F1

1retain

retain- a=-a
- ;

[C] let m n  be the percentage to retain in MVT 
where m is the number of ( , )d d retain

i 11n Σ a .
Step 4: Take the corresponding observations that fall 
below the retention percentile, d retain

a , as determined in 
Step 3 for computation of new estimates for μ and Σ.
Step 5: Compare the new estimates for μ and Σ to that 
of the previous iteration. Return to Step 4 if the maxi­
mum absolute difference between estimates is above 
a user-defined threshold and MVT has iterated fewer 
than 25 times. Else, proceed to Step 6.
Step 6: Declare observations as outliers by compar­
ing distances to an empirical distribution function of 
testing data. The cutoff αoutlier is typically chosen to be 
of the order 10–6 or, as will be seen in subsequent 
results, αoutlier can be varied to produce operating 
characteristic (OC) curves.

In application, these algorithms are processed sequentially 
and for each cluster set within an image.
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7. Application to anomaly detection in 
hyperspectral imagery

In this research, we are looking for anomalies in a hyper­
spectral image. The assumption is that these anomalies are 
manmade and constitute spectral outliers in a statistical 
sense. To this end, we are not concerned with natural anom­
alies that may appear to be outliers when compared to their 
surroundings/clusters. As seen in the synthetic hyperspectral 
image (Figure 3), there are many observations that may be 
considered outliers in the picture (e.g. trees in a grass field).

To alleviate the problem of having many natural outliers 
dispersed throughout the image, the images are first clustered 
using X-means.18 Once the image has been clustered, we are 
in a position to look for outliers within relatively homoge­
nous datasets. As seen in Figure 4, the outliers in the image 
are shown in green (black) with a yellow (white) border.

The task is to identify as many of the green target pixels 
as possible (true positives), while minimizing the identifi­
cation of non-target pixels as targets (false positives).

8. Testing results and analysis

We compared the results for 21 different hyperspectral 
images using three forms of MVT retention (detailed 
below). The results from these three algorithms were com­
pared to output for the BACON algorithm22,23 for the same 
images to determine the efficacy of each MVT algorithm 
against a robust baseline algorithm. 

The images used for testing were taken from the Air 
Force’s Airborne Remote Sensing Program (ARES), and 
synthetic images created using the Digital Imaging and 

Remote Sensing Image Generation (DIRSIG) program.24 
The ARES images were acquired through testing of the 
HYDICE sensor during the Forest Radiance I and Desert 
Radiance II data collection efforts. The images consist of 
manmade objects such as vehicles, panels, camouflage 
nets, and tables. For all real images, the locations of objects 
of interest were determined during collection. The synthetic 
images employed here were created at the same hypotheti­
cal geographical location with differences in time of day, 
sensor view angle, visibility, and target size. The reason for 
using synthetic images in our testing is that currently there 
are not a great number of ‘truthed’ hyperspectral images 
available to the general research community. The DIRSIG 
program is able to produce hyperspectral images that are 
representative of real-world images, and afford the advan­
tage of allowing the user to specify the exact nature and 
location of all the anomalies in the image. The synthetic 
images used were all different variations of Figure 3.

OC curves were found by processing the resulting 
Mahalanobis distances and plotting the estimates for the 
true positive rate (at the pixel level) against the false posi­
tive rate. An additional measure was taken as the area 
underneath the OC curve. An example OC curve for the Air 
Force image is given in Figure 5.

In Figure 5, screened MVT has the largest area under the 
OC curve (AUC). The AUCs for all algorithms are given in 
Table 1.

The OC curves were obtained by varying αoutlier. Each 
OC curve was only considered up to a false positive rate of 
0.05, since rates higher than 0.05 would render target detec­
tion worthless based upon the preponderance of back­
ground pixels in any given image. 

Figure 3.  Synthetic image using only red (dark grey), 
green (light grey), and blue (black) wavelengths.

Figure 4.  Synthetic image target outlier location mask.
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A repeated measures analysis of variance (ANOVA) 
procedure, supplemented by the Holm–Sidak test for mul­
tiple comparisons was conducted for each of four datas­
ets.25 There were two distinct types of imagery (synthetic 
and real) and two performance measures of interest: AUC 
and computation time (in seconds with all processing on the 
same physical system). The four treatments are the algo­
rithms as numbered below:

1.  Screened MVT;
2.  MVT with Chiang’s 50% retention;

3.  MVT with 100 × (1-1/(p+1))% retention;
4.  BACON.

The subjects are the images. There were 15 synthetic images 
and six real images. Table 2 summarizes the analysis.

As is evident from Table 2, the methods, as applied to 
the real imagery, showed significant differences due to the 
treatments only where time was concerned. Examination of 
Figure 6 shows, as expected, that using a more flexible per­
centile for retention within MVT, in general, resulted in a 
larger AUC. As seen in Figure 6, screened MVT performed 

Figure 5.  Operating characteristic curve example for Air Force image. MVT: ellipsoidal multivariate trimming, BACON: blocked 
adaptive computationally efficient outlier nominators.

Table 1.  Area under the operating characteristic curve (AUC) 
values from Figure 5

Area under the OC curve

Screened 
MVT

50% MVT 
retention

100 x (1 – 1/(p + 
1))% retention

BACON

0.8646 0.7685 0.8351 0.7792

MVT: ellipsoidal multivariate trimming, BACON: blocked adaptive 
computationally efficient outlier nominators

Table 2.  Summary of the repeated measures analysis of variance 
procedure with the Holm–Sidak test for multiple comparisons

Image type by 
performance measure

Significant 
treatments?

Significant 
contrasts

Real/AUC No
Real/Time Yes 1–2/2–4/2–3
Synthetic/AUC Yes 1–3/1–2/1–4
Synthetic/Time Yes 1–2/2–3/2–4/1–4

AUC: area under the operating characteristic curve
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the best for three of the six real images. It was also observed 
that in most cases it took less time to complete the algo­
rithm. Average responses are recorded in Table 3.

A more distinct separation of algorithms was observed 
for the synthetic images. As depicted in Figure 7, screened 
MVT performed the best for 11 of the 15 images tested. It 
must be noted that the procedures performed poorly, in gen­
eral, across the synthetic images. This was largely due to 

the presence of many natural anomalies in the image that 
were not clustered into their own cluster set. Although these 
observations were outliers within their cluster set, they 
were not the anomalies of interest.

Significant contrasts were noted for screened MVT ver­
sus the other procedures in terms of AUC (Tables 2 and 4). 
Significant differences in processing times were also found, 
as indicated in Table 2.

Figure 6.  Area under the operating characteristic curve output for real images using four algorithms.

MVT: ellipsoidal multivariate trimming, BACON: blocked adaptive computationally efficient outlier nominators.

Table 3.  Mean performance of the procedures for the
real images

Treatment Average AUC Average time

Screened MVT 0.76   63
MVT with Chiang’s 50% 
retention

0.62 150

MVT
 p100 1

1 %1# -
+d n

retention

0.74   72

BACON 0.74   64

AUC: area under the operating characteristic curve, MVT: ellipsoidal 
multivariate trimming, BACON: blocked adaptive computationally 
efficient outlier nominators

Table 4. Mean performance of the procedures for the
real images

Treatment Average AUC Average time

Screened MVT 0.34   67
MVT with Chiang’s 50% 
retention

0.16 197

MVT
 p100 1

1 %1# -
+d n

retention

0.15   93

BACON 0.23 116

AUC: area under the operating characteristic curve, MVT: ellipsoidal 
multivariate trimming, BACON: blocked adaptive computationally 
efficient outlier nominators
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9. Summary

By utilizing a more flexible estimate for MVT retention via 
PCA screening we were able to improve upon the algorithms 
that use the standard set retention percentiles of 50% and 
100 × (1-1/(p+1))% within MVT. This was accomplished 
while maintaining an analysis approach that was relatively 
‘hands off’. We believe the approach is promising largely 
because no two images are alike in all aspects. By maintain­
ing a more flexible trimming percentage, we were able to 
avoid some of the swamping and masking effects that were 
present in the rigid MVT settings that use fewer of the avail­
able ‘good’ observations for MVT retention.

There were many natural anomalies in the DIRSIG-
created images that resulted in a fairly significant swamp­
ing effect for both the BACON and MVT algorithms. The 
BACON algorithm suffered more from the presence of 
these anomalies, though, due to the trimming process used. 
This is because these natural anomalous observations were 
not included in the estimates of the mean and covariance in 
the trimming process since they were considered outliers 
for the clusters in which they were located. Even though 
these observations should have been trimmed since they 
do not fit into the clusters, they are not targets of interest. 

Furthermore, not including these observations in the dataset 
tended to tighten the estimates for the covariance and the 
mean so that their Mahalanobis distances were inflated 
and, thus, they tended to have distance estimates that looked 
like targets. 

In this paper we examine the efficacy of using the CDC 
algorithm in conjunction with MVT to find outliers in a 
hyperspectral image. A method is advanced to create a flex­
ible retention percentage that more adequately reflects the 
actual number of outlier-free observations, thereby allow­
ing one to form robust estimates of the mean and covari­
ance matrix that may more effectively decrease the effects 
of swamping and masking as compared to using a set per­
centile for retention. The effectiveness of these ideas is 
demonstrated against real and synthetically generated HSI.
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